
Libft
Your very first own library

Summary: The aim of this project is to code a C library regrouping usual functions that
you’ll be allowed to use in all your other projects.

Contents
I Introduction 2

II Common Instructions 3

III Mandatory part 4
III.1 Technical considerations . 4
III.2 Part 1 - Libc functions . 5
III.3 Part 2 - Additional functions . 6

IV Bonus part 9

1

Chapter I

Introduction

C programming can be very tedious when one doesn’t have access to those highly useful
standard functions. This project gives you the opportunity to re-write those functions,
understand them, and learn to use them. This library will help you for all your future C
projects.

Through this project, we also give you the opportunity to expand the list of functions
with your own. Take the time to expand your libft throughout the year.

2

Chapter II

Common Instructions

• Your project must be written in accordance with the Norm. If you have bonus
files/functions, they are included in the norm check and you will receive a 0 if there
is a norm error inside.

• Your functions should not quit unexpectedly (segmentation fault, bus error, double
free, etc) apart from undefined behaviors. If this happens, your project will be
considered non functional and will receive a 0 during the evaluation.

• All heap allocated memory space must be properly freed when necessary. No leaks
will be tolerated.

• If the subject requires it, you must submit a Makefile which will compile your
source files to the required output with the flags -Wall, -Wextra and -Werror, and
your Makefile must not relink.

• Your Makefile must at least contain the rules $(NAME), all, clean, fclean and
re.

• To turn in bonuses to your project, you must include a rule bonus to your Makefile,
which will add all the various headers, librairies or functions that are forbidden on
the main part of the project. Bonuses must be in a different file _bonus.{c/h}.
Mandatory and bonus part evaluation is done separately.

• If your project allows you to use your libft, you must copy its sources and its
associated Makefile in a libft folder with its associated Makefile. Your project’s
Makefile must compile the library by using its Makefile, then compile the project.

• We encourage you to create test programs for your project even though this work
won’t have to be submitted and won’t be graded. It will give you a chance
to easily test your work and your peers’ work. You will find those tests especially
useful during your defence. Indeed, during defence, you are free to use your tests
and/or the tests of the peer you are evaluating.

• Submit your work to your assigned git repository. Only the work in the git reposi-
tory will be graded. If Deepthought is assigned to grade your work, it will be done
after your peer-evaluations. If an error happens in any section of your work during
Deepthought’s grading, the evaluation will stop.

3

Chapter III

Mandatory part

Program name libft.a
Turn in files *.c, libft.h, Makefile
Makefile Yes
External functs. Detailed below
Libft authorized Non-applicable
Description Write your own library, containing an extract of

important functions for your cursus.

III.1 Technical considerations
• It is forbidden to use global variables.

• If you need subfunctions to write a complex function, you should define these sub-
functions as static to avoid publishing them with your library. It would be a good
habit to do this in your future projects as well.

• Submit all files in the root of your repository.

• You must use the command ar to create your librairy, using the command libtool
is forbidden.

4

Libft Your very first own library

III.2 Part 1 - Libc functions
In this first part, you must re-code a set of the libc functions, as defined in their
man. Your functions will need to present the same prototype and behaviors as the orig-
inals. Your functions’ names must be prefixed by “ft_”. For instance strlen becomes
ft_strlen.

Some of the functions’ prototypes you have to re-code use the
"restrict" qualifier. This keyword is part of the c99 standard.
It is therefore forbidden to include it in your prototypes and to
compile it with the flag -std=c99.

You must re-code the following functions. These function do not need any external
functions:

• memset

• bzero

• memcpy

• memccpy

• memmove

• memchr

• memcmp

• strlen

• strlcpy

• strlcat

• strchr

• strrchr

• strnstr

• strncmp

• atoi

• isalpha

• isdigit

• isalnum

• isascii

• isprint

• toupper

• tolower

You must also re-code the following functions, using the function “malloc”:

• calloc

• strdup

5

Libft Your very first own library

III.3 Part 2 - Additional functions
In this second part, you must code a set of functions that are either not included in the
libc, or included in a different form. Some of these functions can be useful to write Part
1’s functions.

Function name ft_substr
Prototype char *ft_substr(char const *s, unsigned int start,

size_t len);
Turn in files -
Parameters #1. The string from which to create the substring.

#2. The start index of the substring in the string
’s’.
#3. The maximum length of the substring.

Return value The substring. NULL if the allocation fails.
External functs. malloc
Description Allocates (with malloc(3)) and returns a substring

from the string ’s’.
The substring begins at index ’start’ and is of
maximum size ’len’.

Function name ft_strjoin
Prototype char *ft_strjoin(char const *s1, char const *s2);
Turn in files -
Parameters #1. The prefix string.

#2. The suffix string.
Return value The new string. NULL if the allocation fails.
External functs. malloc
Description Allocates (with malloc(3)) and returns a new

string, which is the result of the concatenation
of ’s1’ and ’s2’.

Function name ft_strtrim
Prototype char *ft_strtrim(char const *s1, char const *set);
Turn in files -
Parameters #1. The string to be trimmed.

#2. The reference set of characters to trim.
Return value The trimmed string. NULL if the allocation fails.
External functs. malloc
Description Allocates (with malloc(3)) and returns a copy of

’s1’ with the characters specified in ’set’ removed
from the beginning and the end of the string.

6

Libft Your very first own library

Function name ft_split
Prototype char **ft_split(char const *s, char c);
Turn in files -
Parameters #1. The string to be split.

#2. The delimiter character.
Return value The array of new strings resulting from the split.

NULL if the allocation fails.
External functs. malloc, free
Description Allocates (with malloc(3)) and returns an array

of strings obtained by splitting ’s’ using the
character ’c’ as a delimiter. The array must be
ended by a NULL pointer.

Function name ft_itoa
Prototype char *ft_itoa(int n);
Turn in files -
Parameters #1. the integer to convert.
Return value The string representing the integer. NULL if the

allocation fails.
External functs. malloc
Description Allocates (with malloc(3)) and returns a string

representing the integer received as an argument.
Negative numbers must be handled.

Function name ft_strmapi
Prototype char *ft_strmapi(char const *s, char (*f)(unsigned

int, char));
Turn in files -
Parameters #1. The string on which to iterate.

#2. The function to apply to each character.
Return value The string created from the successive applications

of ’f’. Returns NULL if the allocation fails.
External functs. malloc
Description Applies the function ’f’ to each character of the

string ’s’ to create a new string (with malloc(3))
resulting from successive applications of ’f’.

7

Libft Your very first own library

Function name ft_putchar_fd
Prototype void ft_putchar_fd(char c, int fd);
Turn in files -
Parameters #1. The character to output.

#2. The file descriptor on which to write.
Return value None
External functs. write
Description Outputs the character ’c’ to the given file

descriptor.

Function name ft_putstr_fd
Prototype void ft_putstr_fd(char *s, int fd);
Turn in files -
Parameters #1. The string to output.

#2. The file descriptor on which to write.
Return value None
External functs. write
Description Outputs the string ’s’ to the given file

descriptor.

Function name ft_putendl_fd
Prototype void ft_putendl_fd(char *s, int fd);
Turn in files -
Parameters #1. The string to output.

#2. The file descriptor on which to write.
Return value None
External functs. write
Description Outputs the string ’s’ to the given file

descriptor, followed by a newline.

Function name ft_putnbr_fd
Prototype void ft_putnbr_fd(int n, int fd);
Turn in files -
Parameters #1. The integer to output.

#2. The file descriptor on which to write.
Return value None
External functs. write
Description Outputs the integer ’n’ to the given file

descriptor.

8

Chapter IV

Bonus part

If you successfully completed the mandatory part, you’ll enjoy taking it further. You can
see this last section as Bonus Points.

Having functions to manipulate memory and strings is very useful, but you’ll soon
discover that having functions to manipulate lists is even more useful.

You’ll use the following structure to represent the elements of your list. This structure
must be added to your libft.h file.

make bonus will add the bonus functions to the libft.a library.

You do not have to add _bonus to the .c files and the header in this part. Only add
_bonus to the files containing your own bonus functions.

typedef struct s_list
{

void *content;
struct s_list *next;

} t_list;

Here is a description of the fields of the t_list struct:

• content : The data contained in the element. The void * allows to store any kind
of data.

• next : The next element’s address or NULL if it’s the last element.

9

Libft Your very first own library

The following functions will allow you to easily use your lists.

Function name ft_lstnew
Prototype t_list *ft_lstnew(void *content);
Turn in files -
Parameters #1. The content to create the new element with.
Return value The new element.
External functs. malloc
Description Allocates (with malloc(3)) and returns a new

element. The variable ’content’ is initialized
with the value of the parameter ’content’. The
variable ’next’ is initialized to NULL.

Function name ft_lstadd_front
Prototype void ft_lstadd_front(t_list **lst, t_list *new);
Turn in files -
Parameters #1. The address of a pointer to the first link of

a list.
#2. The address of a pointer to the element to be
added to the list.

Return value None
External functs. None
Description Adds the element ’new’ at the beginning of the

list.

Function name ft_lstsize
Prototype int ft_lstsize(t_list *lst);
Turn in files -
Parameters #1. The beginning of the list.
Return value Length of the list.
External functs. None
Description Counts the number of elements in a list.

Function name ft_lstlast
Prototype t_list *ft_lstlast(t_list *lst);
Turn in files -
Parameters #1. The beginning of the list.
Return value Last element of the list.
External functs. None
Description Returns the last element of the list.

10

Libft Your very first own library

Function name ft_lstadd_back
Prototype void ft_lstadd_back(t_list **lst, t_list *new);
Turn in files -
Parameters #1. The address of a pointer to the first link of

a list.
#2. The address of a pointer to the element to be
added to the list.

Return value None
External functs. None
Description Adds the element ’new’ at the end of the list.

Function name ft_lstdelone
Prototype void ft_lstdelone(t_list *lst, void (*del)(void

*));
Turn in files -
Parameters #1. The element to free.

#2. The address of the function used to delete the
content.

Return value None
External functs. free
Description Takes as a parameter an element and frees the

memory of the element’s content using the function
’del’ given as a parameter and free the element.
The memory of ’next’ must not be freed.

Function name ft_lstclear
Prototype void ft_lstclear(t_list **lst, void (*del)(void

*));
Turn in files -
Parameters #1. The adress of a pointer to an element.

#2. The adress of the function used to delete the
content of the element.

Return value None
External functs. free
Description Deletes and frees the given element and every

successor of that element, using the function ’del’
and free(3).
Finally, the pointer to the list must be set to
NULL.

11

Libft Your very first own library

Function name ft_lstiter
Prototype void ft_lstiter(t_list *lst, void (*f)(void *));
Turn in files -
Parameters #1. The adress of a pointer to an element.

#2. The adress of the function used to iterate on
the list.

Return value None
External functs. None
Description Iterates the list ’lst’ and applies the function

’f’ to the content of each element.

Function name ft_lstmap
Prototype t_list *ft_lstmap(t_list *lst, void *(*f)(void *),

void (*del)(void *));
Turn in files -
Parameters #1. The adress of a pointer to an element.

#2. The adress of the function used to iterate on
the list.
#3. The adress of the function used to delete the
content of an element if needed.

Return value The new list. NULL if the allocation fails.
External functs. malloc, free
Description Iterates the list ’lst’ and applies the function

’f’ to the content of each element. Creates a new
list resulting of the successive applications of
the function ’f’. The ’del’ function is used to
delete the content of an element if needed.

You are free to add any function to your libft as you see fit.

12

	Introduction
	Common Instructions
	Mandatory part
	Technical considerations
	Part 1 - Libc functions
	Part 2 - Additional functions

	Bonus part

