
printf

Because putnbr and putstr aren’t enough

Summary: This project is pretty straight forward. You will recode printf. Hopefully you
will be able to reuse it in future project without the fear of being flagged as a cheater.

You will mainly learn how to use variadic arguments.



Contents
I Introduction 2

II Common Instructions 3

III Mandatory part 4

IV Bonus part 5

1



Chapter I

Introduction

The versatility of the printf function in C represents a great exercise in programming for
us. This project is of moderate difficulty. It will enable you to discover variadic functions
in C.
The key to a successful ft_printf is a well-structured and good extensible code.

2



Chapter II

Common Instructions

• Your project must be written in accordance with the Norm. If you have bonus
files/functions, they are included in the norm check and you will receive a 0 if there
is a norm error inside.

• Your functions should not quit unexpectedly (segmentation fault, bus error, double
free, etc) apart from undefined behaviors. If this happens, your project will be
considered non functional and will receive a 0 during the evaluation.

• All heap allocated memory space must be properly freed when necessary. No leaks
will be tolerated.

• If the subject requires it, you must submit a Makefile which will compile your
source files to the required output with the flags -Wall, -Wextra and -Werror, and
your Makefile must not relink.

• Your Makefile must at least contain the rules $(NAME), all, clean, fclean and
re.

• To turn in bonuses to your project, you must include a rule bonus to your Makefile,
which will add all the various headers, librairies or functions that are forbidden on
the main part of the project. Bonuses must be in a different file _bonus.{c/h}.
Mandatory and bonus part evaluation is done separately.

• If your project allows you to use your libft, you must copy its sources and its
associated Makefile in a libft folder with its associated Makefile. Your project’s
Makefile must compile the library by using its Makefile, then compile the project.

• We encourage you to create test programs for your project even though this work
won’t have to be submitted and won’t be graded. It will give you a chance
to easily test your work and your peers’ work. You will find those tests especially
useful during your defence. Indeed, during defence, you are free to use your tests
and/or the tests of the peer you are evaluating.

• Submit your work to your assigned git repository. Only the work in the git reposi-
tory will be graded. If Deepthought is assigned to grade your work, it will be done
after your peer-evaluations. If an error happens in any section of your work during
Deepthought’s grading, the evaluation will stop.

3



Chapter III

Mandatory part

Program name libftprintf.a
Turn in files *.c, */*.c, *.h, */*.h, Makefile
Makefile all, clean, fclean, re, bonus
External functs. malloc, free, write, va_start, va_arg, va_copy,

va_end
Libft authorized yes
Description Write a library that contains ft_printf, a function

that will mimic the real printf

• The prototype of ft_printf should be int ft_printf(const char *, ...);

• You have to recode the libc’s printf function

• It must not do the buffer management like the real printf

• It will manage the following conversions: cspdiuxX%

• It will manage any combination of the following flags: ’-0.*’ and minimum field
width with all conversions

• It will be compared with the real printf

• You must use the command ar to create your librairy, using the command libtool
is forbidden.

man 3 printf / man 3 stdarg

4



Chapter IV

Bonus part

• If the Mandatory part is not perfect don’t even think about bonuses

• You don’t need to do all the bonuses

• Manage one or more of the following conversions: nfge

• Manage one or more of the following flags: l ll h hh

• Manage all the following flags: ’# +’ (yes, one of them is a space)

5


	Introduction
	Common Instructions
	Mandatory part
	Bonus part

