
Get Next Line
Reading a line on a fd is way too tedious

Summary: The aim of this project is to make you code a function that returns a line
ending with a newline, read from a file descriptor.

Contents
I Goals 2

II Common Instructions 3

III Mandatory part - Get_next_line 4

IV Bonus part 6

1

Chapter I

Goals

This project will not only allow you to add a very convenient function to your collection,
but it will also allow you to learn a highly interesting new concept in C programming:
static variables.

2

Chapter II

Common Instructions

• Your project must be written in accordance with the Norm. If you have bonus
files/functions, they are included in the norm check and you will receive a 0 if there
is a norm error inside.

• Your functions should not quit unexpectedly (segmentation fault, bus error, double
free, etc) apart from undefined behaviors. If this happens, your project will be
considered non functional and will receive a 0 during the evaluation.

• All heap allocated memory space must be properly freed when necessary. No leaks
will be tolerated.

• If the subject requires it, you must submit a Makefile which will compile your
source files to the required output with the flags -Wall, -Wextra and -Werror, and
your Makefile must not relink.

• Your Makefile must at least contain the rules $(NAME), all, clean, fclean and
re.

• To turn in bonuses to your project, you must include a rule bonus to your Makefile,
which will add all the various headers, librairies or functions that are forbidden on
the main part of the project. Bonuses must be in a different file _bonus.{c/h}.
Mandatory and bonus part evaluation is done separately.

• If your project allows you to use your libft, you must copy its sources and its
associated Makefile in a libft folder with its associated Makefile. Your project’s
Makefile must compile the library by using its Makefile, then compile the project.

• We encourage you to create test programs for your project even though this work
won’t have to be submitted and won’t be graded. It will give you a chance
to easily test your work and your peers’ work. You will find those tests especially
useful during your defence. Indeed, during defence, you are free to use your tests
and/or the tests of the peer you are evaluating.

• Submit your work to your assigned git repository. Only the work in the git reposi-
tory will be graded. If Deepthought is assigned to grade your work, it will be done
after your peer-evaluations. If an error happens in any section of your work during
Deepthought’s grading, the evaluation will stop.

3

Chapter III

Mandatory part - Get_next_line

Function name get_next_line
Prototype int get_next_line(int fd, char **line);
Turn in files get_next_line.c, get_next_line_utils.c,

get_next_line.h
Parameters #1. file descriptor for reading

#2. The value of what has been read
Return value 1 : A line has been read

0 : EOF has been reached
-1 : An error happened

External functs. read, malloc, free
Description Write a function which returns a line read from a

file descriptor, without the newline.

• Calling your function get_next_line in a loop will then allow you to read the text
available on a file descriptor one line at a time until the EOF.

• Make sure that your function behaves well when it reads from a file and when it
reads from the standard input.

• libft is not allowed for this project. You must add a get_next_line_utils.c file
which will contain the functions that are needed for your get_next_line to work.

• Your program must compile with the flag -D BUFFER_SIZE=xx. which will be used
as the buffer size for the read calls in your get_next_line. This value will be
modified by your evaluators and by moulinette.

• Compilation will be done this way : gcc -Wall -Wextra -Werror -D BUFFER_SIZE=32
get_next_line.c get_next_line_utils.c

• Your read must use the BUFFER_SIZE defined during compilation to read from
a file or from stdin.

• In the header file get_next_line.h you must have at least the prototype of the
function get_next_line.

4

Get Next Line Reading a line on a fd is way too tedious

Does your function still work if the BUFFER_SIZE value is 9999? And
if the BUFFER_SIZE value is 1? And 10000000? Do you know why?

You should try to read as little as possible each time get_next_line
is called. If you encounter a newline, you have to return the
current line. Don’t read the whole file and then process each line.

Don’t turn in your project without testing. There are many tests to
run, cover your bases. Try to read from a file, from a redirection,
from standard input. How does your program behave when you send a
newline to the standard output? And CTRL-D?

• We consider that get_next_line has an undefined behavior if, between two calls,
the same file descriptor switches to a different file before EOF has been reached on
the first fd.

• lseek is not an allowed function. File reading must be done only once.

• Finally we consider that get_next_line has an undefined behavior when reading
from a binary file. However, if you wish, you can make this behavior coherent.

• Global variables are forbidden.

A good start would be to know what a static variable is:
https://en.wikipedia.org/wiki/Static_variable

5

https://en.wikipedia.org/wiki/Static_variable

Chapter IV

Bonus part

The project get_next_line is straightforward and leaves very little room for bonuses,
but I am sure that you have a lot of imagination. If you aced perfectly the mandatory
part, then by all means complete this bonus part to go further. I repeat, no bonus will
be taken into consideration if the mandatory part isn’t perfect.
Turn-in all 3 initial files with _bonus for this part.

• To succeed get_next_line with a single static variable.

• To be able to manage multiple file descriptor with your get_next_line. For ex-
ample, if the file descriptors 3, 4 and 5 are accessible for reading, then you can call
get_next_line once on 3, once on 4, once again on 3 then once on 5 etc. without
losing the reading thread on each of the descriptors.

6

	Goals
	Common Instructions
	Mandatory part - Get_next_line
	Bonus part

